
Web-based Energy-efficient Cache Invalidation in Wireless Mobile
Environment

Y.-K. Chang, M.-H. Hong, and Y.-W. Ting

Dept. of Computer Science & Information Engineering,
National Cheng Kung University

{ykchang,p7691106,p7893113}@mail.ncku.edu.tw

Abstract

More and more users use mobile devices to retrieve
dynamic web pages in the wireless networks. Caching
dynamic pages becomes very important due to the
power constraint of mobile devices. In this paper, we
first introduce a framework to cache and manage the
dynamic web pages on the server side such that these
dynamic pages can also be cached in the mobile
devices. Then we propose a stateful IR-based
approach which only records two numbers, the
number of web pages updated and the number of web
pages updated and also queried after they are updated
on the server in an IR interval. Recording these two
numbers dramatically reduces the IR size. The
experiments show that our proposed approach
combined with the Timestamp and UIR algorithms
consumes the power around 40~47% less than the
original Timestamp and UIR. Also, our method
performs better than the Perfect Server that has the
full knowledge of the contents stored in all the mobile
client’s caches in terms of power consumption.

Keywords: Cache consistency, dynamic web pages,

invalidation report, mobile environments, power

conservation.

1. Introduction

HTTP is used by Web servers, proxies, and

browsers for the transfer of Web documents. It was

originally designed for browsing static documents.

However, during the last decade, the development of

World Wide Web is changing from static to dynamic

pages. Dynamic contents are constructed based on

personalized service and request parameters at the time

the document is requested. For those dynamically

generated documents that may change on every request,

the expiration time is always set to “now” to disable

cache. Although the web pages generated by server-

side scripts are called "dynamic", they may not change

in every second. A lot of dynamic web pages are

intrinsically static, not changed in a period of time. The

same pages have been transmitted over the same

network links again and again to thousands of different

users. Caching can be very effective at reducing

network bandwidth consumption as well as balancing

servers’ load.

The challenge in designing applications that access

dynamic data (e.g., stock, weather) is to ensure that

displayed values are coherent with the data on the

server. We address the coherent problems that arise

from accessing dynamic web data when using mobile

devices. Previous works focus on how to maintain

consistency between the server and proxy [6], [7].

They proposed to use push, pull or hybrid schemes to

maintain the data consistency. Since the proxy and

server are on the wired network, the proxy can receive

updates immediately. Proxy maintains the data

consistency in wired network and informs stale pages

to mobile clients through the wireless networks.

Because of the space limit, we do not describe the

existing web cache schemes and invalidation report

(IR) strategies [1] in this paper. Web caches are used

to cache dynamic web documents while invalidation

strategies broadcast invalidation reports to invalidate

stale pages on the client side.

In this paper, we extend the dynamic page caching

framework to cache dynamic pages accessing remote

databases. Based on the access log of the web server

and query and update logs of the database server, the

dynamic web pages that access databases can be easily

cached on the server side and the client side. In the

proposed framework, Bloom filter is also used to

manage the data consistency between the server and

clients.

Next, we shall propose a stateful approach that can

avoid broadcasting the timestamps of some web pages

that are queried after their updates. The proposed

stateful approach can be integrated to the existing IR-

based caching schemes in the wireless environment to

reduce the power consumption. We also conduct

simulations to show that the proposed scheme can

perform better than the original IR-based schemes.

The rest of this paper is organized as follows:. The

Section 2 introduces a framework and proposed a

stateful IR approach. The simulation model is

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

described in Section 3. Finally, the conclusion is given

in the last Section.

2. Proposed scheme

In this section, we first introduce our previous work

[5] to how to make dynamic pages cacheable and then

extend it by considering how the validity of cached

pages is affected when databases queried by these web

pages are updated. Second, we use Bloom filter to

efficiently broadcast the hash values rather than full

URLs to indicate the stale web pages. Finally, we

propose a stateful approach to improve the

performance of the methods using the invalidation

report.

In order to cache dynamic pages on the mobile

clients and maintain the cache consistency efficiently,

the following tasks must be completed: (1) Making

dynamic web page cacheable. (2) Knowing which

cached pages on the server side are stale. (3)

Maintaining page consistency on the client side.

2.1. Making dynamic web page cacheable

We make the dynamic pages cacheable by the

following framework. The proposition we make is that

the cached web pages must be fresh all the time. All

the stalled web pages will be updated or deleted by the

cache manager that acts as a backend process to

perform the cache management asynchronously. The

system architecture of the proposed caching system is

shown in Fig. 1.

All cached pages are stored in a directory called

Cache Directory. If the requested page exists in Cache
Directory, Web Server could response it directly.

Otherwise, we first trigger Application Server to

generate the requested page. The newly generated page

prefixed with appropriate HTTP Cache-Control

headers is then replied to the client. The replied page is

also stored in Cache Directory as a static file.

Two URL format types are used in proposed

caching system. The URL format type A (e.g.,

http://host/abs_path/page?k1=v1&k2=v2) is the

traditional URL format with the query string when the

client requests a dynamic web page using the GET

method. Since type A URL contains a question mark

(?), the client side cache usually does not cache this

page. In order to remove the question mark from the

URL of a page and this make it cacheable, we define a

static URL format called type B URL (e.g.,

http://host/abs_path/page!k1=v1&k2=v2.html). Type B

URLs are the ones that are released to the public and

used by users. Type A format is only used internally in

the proposed caching system. We reply the client’s

requests in static page format, so they can be cache by

Web browsers on the client sides and Proxy servers.

Embedding the pairs of keyword and value in URL

using GET method loses the flexibility of users’ inputs.

This is where POST method comes from. To imitate

the actions of POST method, we allow users input the

keywords and values but still using type B format. This

can be done by a simple javascript code [5].

The request URL could be for a dynamic page or for

a static page. URL Switch first checks whether or not

the requested page exists in Cache Directory. If the

requested page exists, it is returned to the client by

Web Server directly. When the requested page does not

exist, and the type B URL is first converted to Type A

format and the request is passed to Application Server
to generate and cache the requested page.

For example, if the client requests for

/cachedir/calculate.php!v1=2&v2=3.html and this does

not in Cache Directory. Then URL Switch will

translate the URL into /calculate.php?v1=2&v2=3.

Application Server first call calculate.php to generate

the page, attach it with appropriate Cache-Control

headers, and store the dynamic page into Cache

Directory with the name

calculate.php!v1=2&v2=3.html. Application Server
must inform Cache Manager that the dynamic page is

stored as a static page in Cache Directory. So, Cache
Manager can maintain this newly generated static

page in Cache Directory.

Cache Manager is in charge of the cache files in

Cache Directory. It is behind the web server. Only

Application Server can inform it about the newly

generated pages. Database will change with time, so

we will get different result at different times if queried

with the same input arguments. Our Cache Manager
uses mapping file and update log file to maintain cache

pages consistency in Cache Directory.

2.2. Knowing which cached pages are stale

Here we introduce the method for Cache Manager
to maintain the cached pages in Cache Directory.

Although cache manager can read database’s update

log, it is about which entry in the database is inserted,

updated or deleted. The major challenge is for creating

a mapping between the cached web pages and the

changes of underlying data in the database [3]. We

separate mapping into two parts: (1) Request-to-Query

mapping: the mapping between web pages and queries

that are used for generating these pages. (2) Query-to-

Update mapping: mapping update log to query log. If

database is updated, we use the update log to check

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

those affected queries and then invalidate the affected

cache pages.

The framework of our method is shown in Fig. 2.

The data flow is as follows. When Web Server receives

a client request, if the requested page is not in Cache
Directory, Web Server decides which application

program should serve the request and passes it to the

Application Server. Also Web Server logs the request

in the access_log file. When serving this request,

Application Server will send a query to Database to get

data. When we turn on the function of Database’s

query log, database will log this query into the query

log. So, Logger can read Web Server’s access_log and

Database’s update log to generate Request-to-Query

mapping. Cache Manager reads Database’s update log

and mapping file to find out stale pages on the server.

2.3. Maintaining page consistency in client side

We adopt broadcasting invalidation report from

server rather than sending If Modify Since from client

to check the validity of cached pages. Also, the

number of the web pages is not fixed. There is no fixed

map table for mapping an id onto a data item.

Therefore it is not possible to re-send the map table to

all the clients when the map table is changed because

broadcasting whole URL to indicate stale pages wastes

too much energy. We reduce the invalidation report

timestamp size by using the Bloom filter.

2.3.1. Managing URLs efficiently

Broadcasting complete URLs to indicate which

pages are stale wastes much wireless bandwidth

because the URL length is not fixed and the average

URL length is longer than 40 bytes. To avoid

broadcasting the complete URL of a web page to the

clients, we proposed to use a fixed length encoded

URL and Bloom filter [2], [8]. Bloom filter is a

computationally efficient hash-based probabilistic

scheme that can encode a set of strings of various

lengths with minimum memory requirement. Checking

the existence of a string incurs no false miss and a very

small possibility of false hits.

Currently, for a URL, we select the first 64 bits from

its 128-bit MD5 value as the fixed length encoded

URL called encURL. Each client maintains a Bloom

filter of 65536 bits to record which pages are stored in

the client’s cache. In the current design, we use four

hash functions in the Bloom filter. Naturally, the 64-bit

eURL is split into four 16-bit segments that are used

for the four hash functions of the Bloom filter. Thus,

an IR consists of a list of (eURL, TS) pairs to represent

the changed URLs and their timestamps.

After receiving an IR, a client extracts four 16-bit

values from each eURL and uses them to search its

Bloom filter. The searching process is very efficient

because only four bit positions are checked. If not all

the four bits in the Bloom filter corresponding to these

four extracted 16-bit values are turned on, then the

client knows corresponding page is not in his cache.

No further action is needed. Otherwise, the client uses

the 64-bit eURL to locate the target page in the client’s

cache and compare TS with the timestamp of the

cached page to determine the validity of the page.

Locating a page using the 64-bit eURL can be

efficiently performed by a hash-based implementation

used in Squid proxy [9]. We do not pass a whole

Bloom filter (65536 bits) to the client on every IR

interval.

When a new web page is received and inserted into

the client’s cache, the four bits corresponding to the

eURL in the client’s Bloom filter must be turned on.

To reduce the possibility of false hit, a simple counter

associated with each bit in the Bloom filter can be

employed as suggested in [10]. Also, the Bloom filter

can be recomputed when the bit pressure (percentage

of the set bits) of Bloom filter reaches a threshold or it

can be recomputed periodically.

Using Bloom filter will result in a false hit caused

by the fact that the four hash values of a eURL are

contributed from the hash values of other eURLs. To

find out the false hit ratio in real cases, we performed a

simulation by using http traces from the web site. Our

simulation parameters are in Table 1 and the

simulation results are shown in Fig. 3. Since it is

assumed that there are 2 to 4 updates per second on

server and the IR interval is 20 seconds, the total

number of updates in an IR interval is 40 to 80. We

can see that even under high update rate the false hit

rate is still very small. All fault hit rates in the

experiments are acceptable.

To further reduce the size of broadcast IR, we

propose a stateful approach that can save the

bandwidth usage by removing the timestamps of some

of the updated web pages in the next subsection.

2.3.2. Reducing IR’s Timestamp size

Different from previous stateless approaches, we

propose a stateful approach which only needs two

numbers for each updated web page on server, but has

a large bandwidth reduction. The proposed stateful

approach tries to remove the timestamp used in a

(eURL, TS) pair without violating the cache validity

condition. First consider the situation shown in Fig. 4.

Suppose a web page is queried by a client after it is

updated at the server in the current interval. When

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

receiving an IR, the timestamp of the web page

maintained in client’s cache must be fresher than that

encoded in IR. In this case, the (eURL, TS) pair is kept

unchanged. However, consider when, in current

interval, no query is sent to the server after the data

item is updated. For the timestamp of the web page,

there is no difference between using the IR’s issue

timestamp and the real update time of the web page.

This is because if the web page is cached in any client

cache, it must be older than the timestamp encoded in

IR. Therefore, for those updated web pages without

query before next IR, we can use only one timestamp

(the IR’s timestamp).

In summary, the IR in the proposed scheme is

augmented by two numbers, the number of web pages

that use the old (eURL, TS) pair and the number of

web pages that only use eURL. The web page with no

timestamp encoded in IR uses the IR’s issue time as its

timestamp. Two numbers are needed for each web

page on the server, independent of how many clients

connecting to the server. Compared with the true

stateful approach that maintains full information of

which data is cached by which client, our method is

scalable. The performance results will be provided in

the next section.

3. Performance Evaluation

In order to analyze the performance of our

invalidation algorithms, we develop a model similar to

that in [10]. We assume there is only one server that

serves multiple clients. The simulation model contains

multiple clients, an uplink channel, a downlink channel,

and a server. Clients send queries to the server via the

uplink channel, and receive results from the server via

the downlink channel. The database can only be

updated by the server while the queries are generated

on the client side. Table 2 shows the system

parameters used in our simulation. The database

contains D pages. The size of each web page is O bits.

The size of web page ID is Oid bits and timestamp is Tid

bits. 90% of web pages are in the hot update set, while

10% of web pages are in the cold update set. 90% of

requests are issued for the pages in the hot update set

while the remaining 10% requests are issued for the

pages in the cold update set.

Effect of server’s update rate

We run a simulation to find out the relation between

the numbers of clients and update rates in Fig. 5. We

calculate the number of updated pages that are queried

after update denoted as UQAU and the number of all

updated pages denoted as Uall in the current interval.

The Y-axis represents the percentile of UQAU/Uall.

We can see from the figure that the number of web

pages queried after update is proportional to the

number of clients. When the number of client reaches

150, not shown in the figure, the percentage of web

pages queried after update is 13.377% which is still

acceptable. Update rates do not have much effect on

our algorithm.

Power consumption

We also calculate the IR size by combining our

approach with algorithms Timestamp [1] and UIR [4].

In Timestamp algorithm, the total IR size received by

clients is w (Uall) (Oid+Tid). By integrating our

algorithm with Timestamp algorithm, we have the IR

size as follows.

w Uall (Oid)+w UQAU Tid +w Fsize.

Fsize is the size of memory used to record two

numbers, Uall and UQAU, that are the number of updated

web pages and the number of web pages queried after

their updates in each interval, respectively.

In UIR algorithm, the total IR size received by

clients is w Uall (Oid+Tid) + 1

1

n

(Pi) (Oid+Tid). By

integrating our algorithm with
 UIR algorithm, we have

the following.

w Uall Oid + w UQAU Tid + w Fsize +
1

1

n

(Pi) Oid +
1

1

n

(PiQAU) Tid + n Fsize

IR interval is divided into n segments, so we will

broadcast n 1 UIRs in each IR interval. Here,

Pi =
1

1

n

j

total number of updates between Ti and Ti,j

PiQAU is the number of updated pages queried after

their updates at the time between in Ti and Tij.We show

that the simulated power consumption for the original

Timestamp and UIR algorithms and Timestamp and

UIR integrated with the proposed scheme in Fig. 6.

Besides, an idealized cache invalidation scheme called

Perfect Server is also developed for comparison. In

Perfect Server, it is assumed that the Server has full

knowledge of the contents in all clients’ caches.

Consequently, the invalidation reports generated by

Perfect Server will only contain the update information

of the pages in the clients’ caches. As we can see in Fig.

6 that UIR and TimeStamp algorithms consume more

energy than Perfect Server. The Timestamp and UIR

algorithms integrated with our scheme consume power

40~47% less than the original counterparts. The

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

performance after integration is even better than

Perfect Server that wastes more server load to record

the individual client’s caches. Power consumed by the

original and modified Timestamp and UIR algorithms

do not increase as the number of clients grows. But

power consumed by Perfect Server increases as the

number of clients increases. This is because more and

more pages are cached on the client sides and so server

needs to broadcast more IRs to the clients.

Effect of numbers of pages on the server

In order to know whether the number of pages

stored on the server side has effects on the number of

pages queried after update or not, we run simulations

with different numbers of pages 100000, 150000 and

200000. The results are shown in Fig. 7. We observe

that when the number of pages grows, the percentage

of pages queried after update drops. As the number of

pages on the server side grows, the probability that a

client queries the same updated page decreases.

4. Conclusion

We proposed a framework to cache dynamic pages

on the server side, proxy and client. Furthermore we

use Bloom filter to efficiently encode which pages are

stale. The proposed stateful approach combines the

existing methods to reduce the IR size. The

performance of the proposed method combined with

existing Timestamp and UIR algorithms can consume

power around 40~47% less than the original

Timestamp and UIR Algorithms.

Reference
[1] D. Barbara and T. Imielinski, “Sleepers and

Workaholics: Caching Strategies in Mobile

Environments,” Proc. of the 1994 ACM SIGMOD
Conf, pp. 1-12, 1994.

[2] B. Bloom, “Space/time Trade-offs in Hash Coding

with Allowable Errors,” Communications of the
ACM, vol. 13 , pp. 422-426, Jul. 1970.

[3] K.S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D.

Agrawal. Enabling dynamic content caching for

database-driven web sites. Proc. of the SIGMOD,

2001.

[4] G. Cao, “A Scalable Low-Latency Cache

Invalidation Strategy for Mobile Environments,”

ACM Int’l Conf. on Mobile Computing and
Networking (MobiCom), pp. 200–209, Aug. 2000.

[5] K. L. Chiang, “Design and Implementation of

Caching Dynamic Web Pages,” Master thesis, Dept.

of Information Management, Chung Hua University,

Jul. 2003.

[6] P. Deolasee, A. Katkar, A. Panchbudhe, K.

Ramamritham and P. Shenoy, “Adaptive push-pull:

disseminating dynamic web data,” Proc. of the tenth
international conference on World Wide Web,

pp.265-274, May 2001.

[7] V. Duvvuri, P. Shenoy and R. Tewari “Adaptive

Leases: A Strong Consistency Mechanism for the

World Wide Web,” Tec. Re.t TR99-41, Dep. of

Computer Science, University of Massachusetts at

Amherst, Jun. 1999.

[8] M. Hamilton, A. Rouskov & D. Wessels. “Cache

Digest Specification”, http://squid.nlanr.net/Squid/

CacheDigest/cache-digest-v5.txt

[9] Squid internet object cache, http://squid.nlanr.net/.

[10] K.-L. Tan, J. Cai and B. C. Ooi, “An Evaluation of

Cache Invalidation Strategies in Wireless

Environments,” IEEE Transactions on Parallel and
Distributed Systems, vol.12 , pp.789-807, Aug. 2001.

Fig. 1. The structure of dynamic web page caching system.

Fig. 2. Maintaining cache consistency on the server side.

Web Server

Application Server

Http request

Query string

DBMS

Logger

Cache
Manager

Update

access log

query log

update log

mapping file

Generate

Cache Directory

Invalidate

Static

Web Server

Cache Directory

URL
Switch

Dynamic

Client Request

Save

Request

Invalidate

Notify

Response

Response

Cache Manager

DBMS

QueryData

Response

Application
Server

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Table 1: Simulation parameters for Bloom filter.

Parameters Default Values

Cache size 3000 pages

Mean update rate on server 2, 3 or 4 per second

% of pages in hot update set 10

IR interval 20 seconds

% of requests for pages in hot update set 90

Timestamp size 64 bits

IR window 10 intervals

Number of clients 60

Bloom filter

numbers of URLs

Fig. 3. False hit rate of using Bloom filters.

Fig. 4. The IR-based cache invalidation model.

Table 2: System parameters

Notation Definition Default values

D Total web pages 100,000 pages

q Query arrival rate per client 1 query/sec

u Update arrival rate on the server 2 page/sec

1 % of web pages in the cold update set 10

2 % of requests for pages in cold update set 10

1 % of web pages in the hot update set 90

2 % of requests for pages in hot update set 90

Cup Bandwidth of uplink channel 19.2 kB

Cdown Bandwidth of downlink channel 100 kB

L Periodic broadcast interval 20 sec

w IR window 10

O Object size 5 kB

Oid Object ID size 64 bits

Tid Timestamp size 64 bits

C Number of clients 20

0

2

4

6

8

10

12

10 20 30 40 50 60
number of clients

%
 o

f
p

ag
es

 q
u

er
ie

d
 a

ft
er

 u
p
d

at
e

Update Rate=7 Update Rate=3 Update Rate=2

Fig. 5. Number of pages queried after update.

50000

100000

150000

200000

250000

300000

10 20 30 40 50 60

number of clients

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

u
n
it

)

TimeStamp Original Timestamp Modify

UIR Original UIR Modify

Perfect Server

Fig. 6. Power consumption for various schemes.

0

2

4

6

8

10

12

14

10 20 30 40 50 60
number of clients

%
 o

f
p
ag

es
 q

u
er

ie
d

 a
ft

er
 u

p
d
at

e

Size=100000

Size=150000

Size=200000

Fig. 7. The effects of number of cached pages in server on

the number of pages queried after update.

Ti-1

Update

Query after

Ti

Query before

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

